

29 May 2025

Further robust zones of near surface higher-grade lithium mineralisation at Pinheiro and Reservatório

Savannah Resources plc, the developer of the Barroso Lithium Project (the 'Project') in Portugal, Europe's largest spodumene lithium deposit, is pleased to announce the third batch of assay results from Phase 2 of its Definitive Feasibility Study ('DFS') drilling programme at the Project. The 117-hole, c.13,000m programme is being undertaken for further JORC Resource definition, geotechnical and metallurgical purposes and today's results further highlight the potential for greater resources to be defined at the Project.

Highlights:

- The Phase 2 drill programme for the DFS is moving towards completion, primarily targeting the Pinheiro, Reservatório and Grandão deposits.
- To date 86 holes have been drilled for c. 10,393m in the planned 117 hole/c.13,000m programme.
- New Significant lithium assays have been received from a further 26 holes (3 at Pinheiro, 21 at Reservatório and 2 at Grandão), taking the total number of holes assayed to date to 68.
- At **Pinheiro**, we are continuing to intersect broad zones of higher-grade lithium mineralisation both near the surface and at depth on a routine basis. New intersections include:
 - 43m @1.24% Li₂O from 15m in hole 25PNRRC034, including 5m @1.93% Li₂O
 - o 30m @1.5% Li₂O from 46m in hole 25PNRRC035, including 6m @1.82% Li₂O
 - 19m @1.25% Li₂O from 50m in hole 25PNRDD015, including 8m @1.73% Li₂O and 47m @1.29% Li₂O from 73m including 9.2m @1.81% Li₂O making a total of 70m of near continuous mineralisation
- At Reservatório, results continue to give very encouraging indications of multiple zones of highergrade mineralisation and confirm the potential expansion of the resource to the northeast. Better intersections include:
 - 38m @1.67% Li₂O from 41m in hole 25RESRC070, including 6m @2.17% Li₂O
 - 34.91m @1.24% Li₂O from 99m in hole 25RESRC054 (includes 23.1m @ 1.28% Li₂O from 99m previously reported from RC drilling)

- o 31m @1.23% Li₂O from 71m in hole 25RESRC084
- o 30m @1.26% Li₂O from 30m in hole 25RESRC066
- 28m @1.17% Li₂O from 42m in hole 25RESRC080, and 9m @ 0.86% Li₂O from 96m
- 26m @1.33% Li₂O from 49m in hole 25RESRC068
- o 26m @1.10% Li₂O from 72m in hole 25RESRC062
- 21m @1.19% Li₂O from 100m and 13m @ 0.79% Li₂O from 124m in hole 25RESRC082
- Recent results from **Grandão** confirm that mineralisation continues along strike and down dip with results including:
 - o 7m @1.38% Li₂O from 65m in hole 25GRARC144, including 4m @1.5% Li₂O
 - 6m @0.97% Li₂O from 13m in hole 24GRARC147 and 4m @1.03% Li₂O from 23m and 11m @0.97% Li₂O from 30m

Savannah's Technical Director, Dale Ferguson said, "We have now completed 80% of the Phase 2 DFS drill programme and we are moving towards the completion of this critical phase of work. We are continuing to see further higher-grade zones of lithium mineralisation at Pinheiro combined with very good widths. This points towards the potential for an increase in the size of the Pinheiro resource and overall grade (last estimated at 2.0Mt at 1.0% Li₂O, Inferred). The recent batch of drilling results from Reservatório is also very encouraging with results suggesting there is potential to extend the resource further to the northeast.

"Overall, the potential for greater resources at the Project is reiterated by each batch of assays we receive. With the end of the programme approaching, the focus is now turning to the update of the JORC Resource models for the Grandão, Reservatório, and Pinheiro orebodies and the definition of a new Exploration Target¹ for the project (previously estimated at 11-19Mt at 1.0-1.2% Li₂O)."

Further Information

As previously announced, Savannah started Phase 2 of the DFS-related drilling programme at the Barroso Lithium Project in January 2025 (Figure 1). The programme consists of drilling for resource, metallurgical and geotechnical purposes using primarily Reverse Circulation ('RC') rigs with some supplementary diamond drilling (DD). To date, over 10,000m of drilling has been completed of the c.13,000m initially planned for Phase 2. The programme is ongoing, and further updates will be provided as more results are received.

¹Cautionary Statement: The potential quantity and grade of the Additional Exploration Targets is conceptual in nature, there has been insufficient prospecting work to estimate a mineral resource and it is uncertain if further prospecting will result in defining a mineral resource.

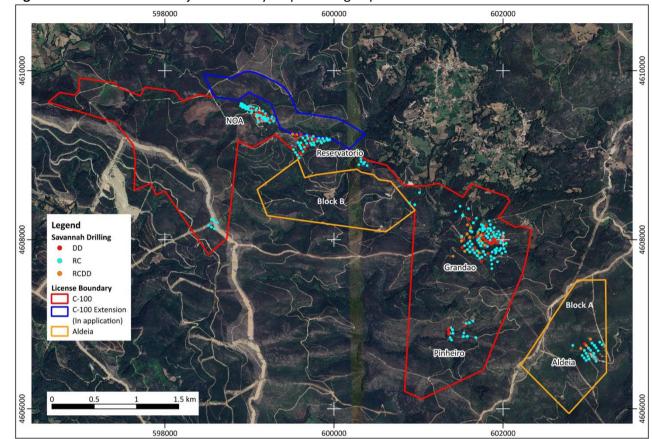
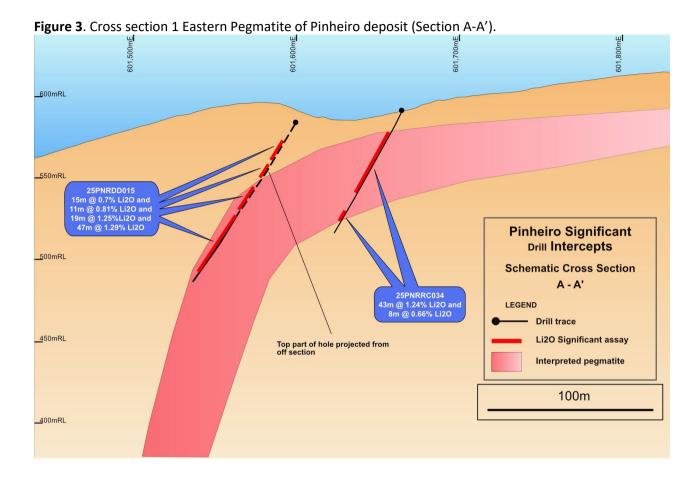


Figure 1. Barroso Lithium Project summary map showing deposits and drill hole locations.

Pinheiro

The JORC Resource estimate for the Pinheiro deposit (all Inferred as at May 2024) is 2.0Mt at 1.0% Li₂O.


Results from the Pinheiro drilling continue to be positive with regular intersection of robust higher-grade zones of lithium mineralisation. We are particularly encouraged by the results from hole 25PNRDD015, a planned geotechnical hole, which intersected the pegmatite at an unmapped location and followed a zone of over 70m of virtually continuous lithium mineralisation down dip. Drill hole 25PNRRC034 is the northern most planned hole and intersected high-grade mineralisation across the width of the pegmatite, which points towards the excellent potential for an expansion of the current resource.

Significant recent lithium mineralisation intersections at Pinheiro include:

- \circ 19m @1.25% Li₂O from 50m in hole 25PNRDD015, including 8m @1.73% Li₂O, and 47m @1.29% Li₂O from 73m, including 9.2m @1.81% Li₂O.
- o 43m @1.24% Li₂O from 15m in hole 25PNRRC034, including 5m @1.93% Li₂O
- $_{\odot}$ 30m @1.5% Li $_{2}$ O from 46m in hole 25PNRRC035, including 6m @1.82% Li $_{2}$ O, 2m @1.88% Li $_{2}$ O, 2m @2.07% Li $_{2}$ O and 2m @1.81% Li $_{2}$ O

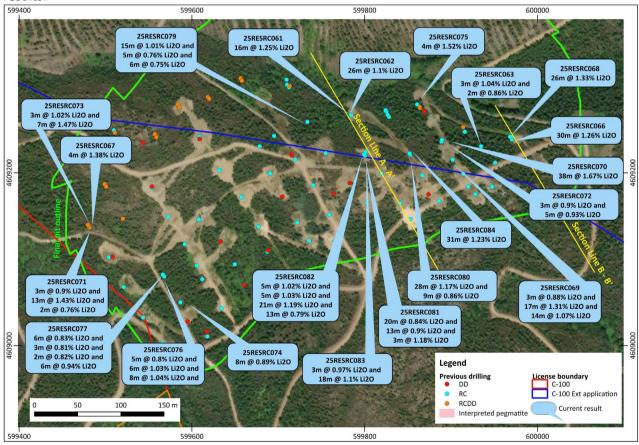
601350 601450 601550 601650 Legend Current result 25PNRRC034 **Drill hole locations** 43m @ 1.24% Li2O and DD Selected previous 8m @ 0.66% Li2O results RCDD 25PNRRC032 11m @ 0.98% Li2O Interpreted pegmatite 25PNRRC031 2m @ 1.2% Li2O and 4m @ 1.64% Li2O and 6.8m @ 1.19% Li2O 25PNRDD015 15m @ 0.7% Li2O and 11m @ 0.81% Li2O and 19m @ 1.25% Li2O and 47m @ 1.29% Li2O 24PNRDD008 25PNRRC035 16.43 m @ 1.57% Li2O 30m @ 1.5% Li2O and 3m @ 0.71% Li2O 25PNRRC026 25PNRDD011 2m @ 1.29% Li2O and 21m @ 1.26% Li2O 2m @ 1.19% Li2O and 20.76m @ 1.48% Li2O 18PNRRC012 9m @ 1.05% Li2O 25PNRRC029 6m @ 1.01% Li2O and 16m @ 0.78% Li2O 18PNRRC009 35 m @ 1.19% Li2O 25PNRRC028 29m @ 1.33% Li2u 25PNRRC027 26m @ 1.40% Li2O 25PNRDD009 9m @ 0.62% Li2O 25PNRDD013 25PNRRC030 31.04m @ 1.46% Li2O 6m @ 0.73%Li2O and 24m @ 1.17% Li2O and 28m @ 1.21% Li2O 20 40 60 80 m 601350 601450 601550 601650

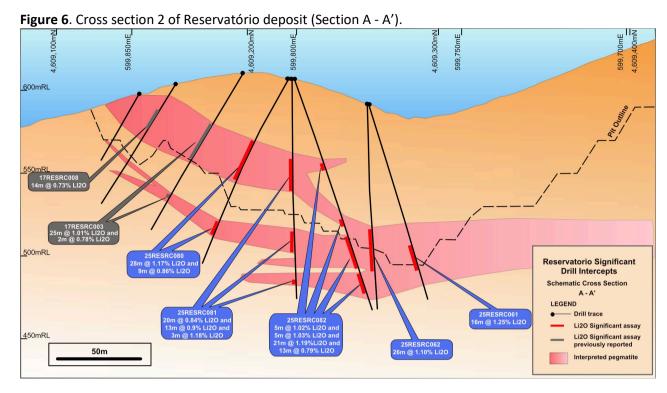
Figure 2. Location of Phase 2 diamond drilling at Pinheiro with significant intercepts to date.

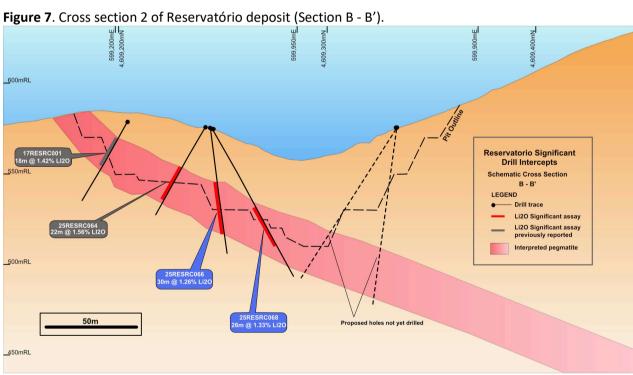
Reservatório

The JORC Resource estimate for the Reservatório deposit (Indicated & Inferred as of May 2024) is 4.2Mt at 0.9% Li₂O.

The drilling at Reservatório continued to deliver excellent results with multiple intersects, showing geological consistency, including in the areas where some natural variations were found in the first results received for the east end of the pegmatite. The latest results include encouraging intersects at the northeastern portion of the resource, which continue to point towards the potential for an expansion of the resource in this direction.


Significant mineralised intersections at **Reservatório** include:


- o 38m @1.67% Li₂O from 41m in hole 25RESRC070, including 6m @2.17% Li₂O
- 34.91m @1.24% Li₂O from 99m in hole 25RESRC054, (includes 23.1m @ 1.28% Li₂O from 99m previously reported from RC drilling)
- O 31m @1.23% Li₂O from 71m in hole 25RESRC084
- o 30m @1.26% Li₂O from 30m in hole 25RESRC066, including 3m @1.80% Li₂O
- o 28m @1.17% Li₂O from 42m in hole 25RESRC080, including 6m @1.55% Li₂O
- o 27m @1.25% Li₂O from 100m in hole 25RESRC050, including 10m @1.40% Li₂O


- o 26m @1.33% Li₂O from 49m in hole 25RESRC068
- \circ 26m @1.10% Li₂O from 72m in hole 25RESRC062, including 4m @1.49% Li₂O
- \circ 18m @1.10% Li₂O from 82m in hole 25RESRC083, including 5m @1.52% Li₂O
- o 16m @1.25% Li₂O from 86m in hole 25RESRC061, including 3m @1.68% Li₂O
- o 17m @1.31% Li₂O from 29m in hole 25RESRC069, and 14m @1.07% Li₂O from 69m
- o 13m @1.43% Li₂O from 125m in hole 25RESRC071, including 4m @1.98% Li₂O
- 15m @1.01% Li₂O from 61m in hole 25RESRC079, 5m @0.76% Li₂O from 82m, 6m @0.75%
 Li₂O from 109m
- $_{\odot}$ 5m @1.03% Li $_{2}$ O from 89m in hole 25RESRC082, and 21m @1.19% Li $_{2}$ O from 100m and 13m @ 0.79% Li $_{2}$ O from 124m

Drilling operations at Reservatório are still in progress, in the deeper portions dipping to the north.

Figure 5. Location of Phase 2 diamond drilling at Reservatório with significant intercepts from assays results.

Grandão

The JORC Resource estimate for the Grandão deposit (Measured, Indicated & Inferred as of May 2024) is 17.7Mt at 1.04% Li₂O.

The drilling at Grandão has continued to focus primarily on the southern extremities of the pegmatite and where it occurs nearer to the surface and will be part of the preliminary mining stages. The drilling has

shown that the southern edge is thinner than the central part of the pegmatite with widths varying between 3m to 20m.

Significant mineralised intersections at **Grandão** include:

- o 7m @1.38% Li₂O from 65m in hole 25GRARC144, including 4m @1.5% Li₂O
- 6m @0.97% Li₂O from 13m in hole 24GRARC147 and 4m @1.03% Li₂O from 23m and 11m
 @ 0.97% Li₂O from 30m

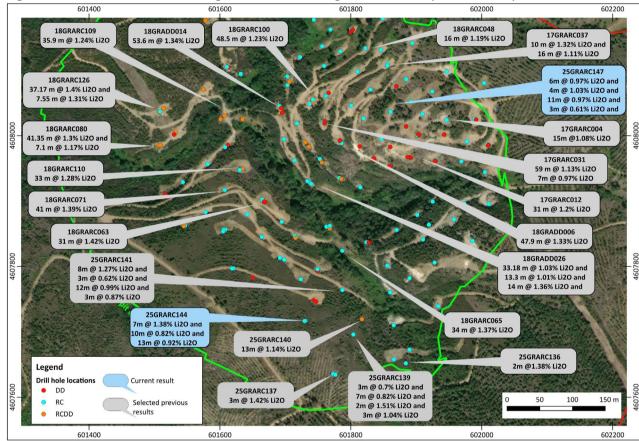


Figure 9. Location of Phase 2 drilling at Grandão with significant intercepts from assays results.

Next steps

The initial stage of the Phase 2 drilling is nearing completion and the results from this will feed into upgrading the confidence level of the existing resource estimations for each deposit. On top of this, it is planned to drill the Aldeia A deposit with the aim to infill the drilling to gain a 40m x 40m coverage to upgrade the existing Resource (3.5Mt at 1.3% Li₂O) that was previously outlined in 2019.

In conjunction with resource drilling, preparation of the specific requirements of core samples for metallurgical testing has commenced. Once results have been received the specific sample requirements requested by Savannah's metallurgical consultants will be sorted and sent for testing.

The drilling of diamond drill holes for geotechnical testing is complete at Pinheiro and is currently being carried out at Grandão and then onto Reservatório. The results from this programme will be used to aid in

the design of the various mining pits to ensure maximum extraction of ore under safe and sustainable conditions.

Competent Person and Regulatory Information

The information in this announcement that relates to exploration results is based upon information compiled by Mr Dale Ferguson, Technical Director of Savannah Resources Limited. Mr Ferguson is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM) and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the December 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code) and as a qualified person under the AIM Rules. Mr Ferguson consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

Regulatory Information

This Announcement contains inside information for the purposes of the UK version of the market abuse regulation (EU No. 596/2014) as it forms part of United Kingdom domestic law by virtue of the European Union (Withdrawal) Act 2018 ("UK MAR").

Savannah - Enabling Europe's energy transition.

ENDS

Follow @SavannahRes on X (Formerly known as Twitter)

Follow Savannah Resources on LinkedIn

For further information please visit <u>www.savannahresources</u>.com or contact:

Savannah Resources PLC Tel: +44 20 7117 2489

Emanuel Proença, CEO

SP Angel Corporate Finance LLP (Nominated Advisor & Broker) Tel: +44 20 3470 0470

David Hignell/ Charlie Bouverat (Corporate Finance)

Grant Barker/Abigail Wayne (Sales & Broking)

Canaccord Genuity Limited (Joint Broker)

Tel: +44 20 7523 8000

James Asensio / Charlie Hammond (Corporate Broking)

Ben Knott (Sales)

Camarco (UK Financial PR)
Tel: +44 20 3757 4980

Gordon Poole/Emily Hall / Nuthara Bandara

Portugal Media Relations

Savannah Resources: Antonio Neves Costa, Communications Manager Tel: +351 962 678 912

About Savannah

Savannah Resources is a mineral resource development company and the sole owner of the Barroso Lithium Project (the 'Project') in northern Portugal. The Project is the largest battery-grade spodumene lithium resource outlined to date in Europe and was classified as a 'Strategic Project' by the European Commission under the Critical Raw Materials Act in March 2025.

Through the Project, Savannah will help Portugal to play an important role in providing a long-term, locally sourced, lithium raw material supply for Europe's lithium battery value chain. Once in operation, the Project will produce enough lithium (contained in c.190,000tpa of spodumene concentrate) for approximately half a million vehicle battery packs per year and hence make a significant contribution towards the European Commission's Critical Raw Material Act goal of a minimum 10% of European endogenous lithium production from 2030. Savannah is focused on the responsible development and operation of the Barroso Lithium Project so that its impact on the environment is minimised and the socio-economic benefits that it can bring to all its stakeholders are maximised.

The Company is listed and regulated on the AIM Market of the London Stock Exchange and trades under the ticker "SAV".APPENDIX 1: Drill hole locations of Completed Phase 2 RC and Diamond Resource Holes (* with assays)

(* with assays)			Tot					
		Hole	Depth					
Hole ID	Prospect	Туре	(m)	Easting	Northing	RL	Dip	Azimuth
25GRADD048	Grandão	DD	128.25	601650	4607783	567	-50	190
25GRADD049	Grandão	DD	120.7	601516	4607909	507	-50	230
25GRARC134*	Grandão	RC	30	601928	4607805	578	-90	0
25GRARC135*	Grandão	RC	50	601889	4607672	587	-90	0
25GRARC136*	Grandão	RC	40	601884	4607651	595	-90	0
25GRARC137*	Grandão	RC	80	601772	4607635	606	-90	0
25GRARC138*	Grandão	RC	80	601776	4607634	606	-60	90
25GRARC139*	Grandão	RC	84	601803	4607696	577	-90	0
25GRARC140*	Grandão	RCDD	28.6	601817	4607719	562	-90	0
25GRARC141*	Grandão	RC	90	601787	4607763	551	-72	90
25GRARC142	Grandão	RCDD	49	601734	4607675	596	-60	90
25GRARC143	Grandão	RCDD	50	601732	4607675	597	-90	0
25GRARC144*	Grandão	RC	170	601730	4607716	582	-70	90
25GRARC145	Grandão	RC	142	601729	4607716	582	-90	0
25GRARC146	Grandão	RCDD	122.25	601634	4608025	504	-60	120
25GRARC147*	Grandão	RC	141	601742	4608055	539	-65	45
25GRARC148	Grandão	RC	128.25	601650	4607783	568	-50	190
25GRARC149	Grandão	RC	120.70	601517	4607910	507	-50	230
25PNRDD009*	Pinheiro	DD	84.85	601594	4606830	580	-60	270
25PNRDD010	Pinheiro	DD	110.35	601590	4606831	584	-57	215
25PNRDD011*	Pinheiro	DD	120.75	601583	4606909	575	-50	263
25PNRDD012	Pinheiro	DD	101.2	601579	4606910	575	-50	63
25PNRDD013*	Pinheiro	DD	124.9	601399	4606803	538	-60	90
25PNRDD014	Pinheiro	DD	111.8	601414	4606856	561	-50	185
25PNRDD015*	Pinheiro	DD	126.8	601598	4607011	583	-50	310
25PNRDD016	Pinheiro	DD	108.3	601399	4606802	538	-50	110
25PNRDD017	Pinheiro	DD	100.1	601599	4607011	583	-62	310
25PNRDD018	Pinheiro	DD	179.55	601637	4606994	572	-55	230
25PNRRC026*	Pinheiro	RCDD	120	601607	4606920	573	-70	270
25PNRRC027*	Pinheiro	RC	100	601578	4606879	581	-90	0
25PNRRC028*	Pinheiro	RCDD	94.3	601577	4606879	581	-80	270
25PNRRC029*	Pinheiro	RC	70	601575	4606878	581	-60	270
25PNRRC030*	Pinheiro	RC	70	601430	4606800	554	-60	90
25PNRRC031*	Pinheiro	RCDD	128.55	601599	4607010	583	-60	245
25PNRRC032*	Pinheiro	RC	100	601639	4607036	584	-60	270
25PNRRC033	Pinheiro	RCDD	131.5	601636	4606995	573	-60	270
25PNRRC034*	Pinheiro	RC	85	601664	4607061	591	-60	270
25PNRRC035*	Pinheiro	RC	110	601589	4606977	572	-60	270
25RESDD015	Reservatório	DD	150,80	599507	4609100	615	-50	222
25RESDD016	Reservatório	DD	90,80	599869	4609271	577	-50	350

		11-1-	Tot					
Hole ID	Prospect	Hole Type	Depth (m)	Easting	Northing	RL	Dip	Azimuth
25RESRC046*	Reservatório	RCDD	184.8	599583	4609279	639	-80	150
25RESRC047*	Reservatório	RCDD	178.7	599585	4609275	639	-65	150
25RESRC048*	Reservatório	RCDD	186.5	599498	4609187	641	-90	0
25RESRC049*	Reservatório	RCDD	174	599500	4609184	641	-70	150
25RESRC050*	Reservatório	RCDD	140.1	599520	4609147	631	-63	150
25RESRC051*	Reservatório	RCDD	160.4	599618	4609287	620	-80	150
25RESRC052*	Reservatório	RCDD	158.8	599620	4609285	619	-70	150
25RESRC053*	Reservatório	RC	111	599695	4609242	613	-90	0
25RESRC054*	Reservatório	RCDD	150.4	599656	4609309	604	-90	0
25RESRC055*	Reservatório	RCDD	105	599657	4609306	604	-70	150
25RESRC056*	Reservatório	RCDD	88	599913	4609253	577	-80	0
25RESRC057*	Reservatório	RC	88	599915	4609247	577	-60	140
25RESRC058*	Reservatório	RCDD	96	599710	4609302	593	-80	150
25RESRC059*	Reservatório	RC	100	599950	4609211	586	-60	150
25RESRC060*	Reservatório	RC	147	599712	4609299	593	-60	150
25RESRC061*	Reservatório	RC	120	599783	4609267	588	-70	310
25RESRC062*	Reservatório	RC	120	599784	4609266	588	-90	0
25RESRC063*	Reservatório	RC	67	599934	4609230	581	-60	150
25RESRC064*	Reservatório	RC	55	599970	4609238	575	-60	150
25RESRC065*	Reservatório	RC	140	599503	4609102	617	-60	150
25RESRC066*	Reservatório	RC	70	599970	4609241	575	-80	0
25RESRC067*	Reservatório	RCDD	160.8	599481	4609136	628	-65	150
25RESRC068*	Reservatório	RC	94	599968	4609241	575	-60	340
25RESRC069*	Reservatório	RC	91	599901	4609215	594	-60	150
25RESRC070*	Reservatório	RC	100	599888	4609236	589	-60	150
25RESRC071*	Reservatório	RCDD	143	599480	4609138	628	-75	150
25RESRC072*	Reservatório	RC	85	599889	4609238	589	-90	0
25RESRC073*	Reservatório	RCDD	177.25	599479	4609139	628	-85	150
25RESRC074*	Reservatório	RC	90	599586	4609050	607	-60	150
25RESRC075*	Reservatório	RCDD	85	599863	4609275	579	-70	150
25RESRC076*	Reservatório	RC	100	599568	4609080	614	-60	150
25RESRC077*	Reservatório	RC	105	599566	4609082	614	-80	150
25RESRC078*	Reservatório	RCDD	91	599863	4609276	579	-90	0
25RESRC079*	Reservatório	RC	121	599733	4609259	603	-60	150
25RESRC080*	Reservatório	RC	122	599800	4609219	606	-60	150
25RESRC081*	Reservatório	RC	133	599799	4609221	606	-90	0
25RESRC082*	Reservatório	RC	147	599801	4609224	606	-70	330
25RESRC083*	Reservatório	RC	107	599852	4609221	600	-60	150
25RESRC084*	Reservatório	RC	111	599852	4609222	600	-90	0
25RESRC085	Reservatório	RC	160	599710	4609308	597	-80	330
25RESRC086	Reservatório	RC	109.80	599710	4609303	594	-80	150
25RESRC087	Reservatório	RC	109	599826	4609268	584	-60	150
25RESRC088	Reservatório	RC	116	599827	4609270	585	-80	150

Hole ID	Prospect	Hole Type	Tot Depth (m)	Easting	Northing	RL	Dip	Azimuth
25RESRC089	Reservatório	RC	120	599827	4609271	585	-75	330
25RESRC090	Reservatório	RC	153	599827	4609271	585	-55	330
25RESRC091	Reservatório	RC	108	599862	4609278	576	-70	330

APPENDIX 2 - Summary of Significant Intercepts from the diamond drilling using a 0.5% $\underline{\text{Li}_2\text{O Cutoff.}}$

Hole ID		Prospect	From	То	Width	Li20
25GRARC144		Grandão	65	72	7	1.38
	and	Grandão	104	114	10	0.82
	and	Grandão	126	139	13	0.92
25GRARC145		Grandão	50	62	12	0.79
	and	Grandão	88	90	2	0.95
	and	Grandão	103	107	4	1.24
	and	Grandão	111	134	23	1.55
25GRARC146		Grandão	60	75	15	0.98
25GRARC147		Grandão	13	19	6	0.97
	and	Grandão	23	27	4	1.03
	and	Grandão	30	41	11	0.97
	and	Grandão	68	72	4	0.51
	and	Grandão	77	80	3	0.5
	and	Grandão	115	118	3	0.61
25PNRDD015		Pinheiro	14	29	15	0.7
	and	Pinheiro	32	43	11	0.81
	and	Pinheiro	50	69	19	1.25
	and	Pinheiro	73	120	47	1.29
25PNRDD016		Pinheiro	64.6	68.55	3.95	1.34
	and	Pinheiro	71.25	76	4.75	1.07
25PNRRC034		Pinheiro	15	58	43	1.24
	and	Pinheiro	70	78	8	0.66
25PNRRC035		Pinheiro	46	76	30	1.5
	and	Pinheiro	81	84	3	0.71
25RESRC052**		Reservatório	124	139	15	0.77
	and	Reservatório	144	149	5	1.09
25RESRC061		Reservatório	86	102	16	1.25
25RESRC062		Reservatório	72	98	26	1.1
25RESRC063		Reservatório	35	38	3	1.04
	and	Reservatório	42	44	2	0.86
25RESRC066		Reservatório	30	60	30	1.26
25RESRC067		Reservatório	127	131	4	1.38
25RESRC068		Reservatório	49	75	26	1.33
25RESRC069		Reservatório	16	19	3	0.88
	and	Reservatório	29	46	17	1.31
	and	Reservatório	69	83	14	1.07
25RESRC070		Reservatório	41	79	38	1.67
25RESRC071		Reservatório	30	33	3	0.9
	and	Reservatório	125	138	13	1.43
	and	Reservatório	141	143	2	0.76
25RESRC072		Reservatório	64	67	3	0.9
	and	Reservatório	73	78	5	0.93
25RESRC073		Reservatório	30	33	3	1.02
	and	Reservatório	133	140	7	1.47
25RESRC074		Reservatório	65	73	8	0.89

25RESRC075	Reservatório	66	70	4	1.52
25RESRC076	Reservatório	63	68	5	0.8
and	Reservatório	74	80	6	1.03
and	Reservatório	83	91	8	1.04
25RESRC077	Reservatório	62	68	6	0.83
and	Reservatório	72	75	3	0.81
and	Reservatório	78	80	2	0.82
and	Reservatório	85	91	6	0.94
25RESRC078*	Reservatório	Wai	ting for resul	ts from diam	ond tail
25RESRC079	Reservatório	61	76	15	1.01
and	Reservatório	82	87	5	0.76
and	Reservatório	109	115	6	0.75
25RESRC080	Reservatório	42	70	28	1.17
and	Reservatório	96	105	9	0.86
25RESRC081	Reservatório	48	68	20	0.84
and	Reservatório	92	105	13	0.9
and	Reservatório	121	124	3	1.18
25RESRC082	Reservatório	53	58	5	1.02
and	Reservatório	89	94	5	1.03
and	Reservatório	100	121	21	1.19
and	Reservatório	124	137	13	0.79
25RESRC083	Reservatório	23	26	3	0.97
and	Reservatório	82	100	18	1.1
25RESRC084	Reservatório	71	102	31	1.23

^{*}Significant results from RC hole, diamond tail to follow

** From completed diamond tail

<u>APPENDIX 3 – JORC 2012 Table 1 - DFS Infill Drilling</u> JORC Table 1 Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling	Nature and quality of sampling (e.g. cut channels,	The majority of previous holes were reverse
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. Drill type (e.g. core, reverse circulation, open-hole 	circulation, sampled at 1m intervals. RC samples were collected in large plastic bags attached to the cyclone. On completion of the 1m run the large sample was passed through a 3-stage riffle splitter to collect a 2.5-4kg sub sample, to be used for assay. • Diamond holes were completed for metallurgical sampling, geotechnical analysis and resource estimation. Core was PQ/HQ size, sampled at 1m intervals in the pegmatite, with boundaries sampled to geological boundaries. Half core samples were collected for analysis. • Drilling was carried out to infill previous drilling to achieve a nominal 40m by 40m spacing with selected infill to 40m by 20m spacings, or as twins of previous RC drilling to get known samples for metallurgical testing. Geotechnical drilling was designed purely to intersect planned pit walls and pegmatite intersections were incidental, but followed all standard logging and sampling in line with all the drilling. • Collar surveys are carried using differential DGPS with an accuracy to within 0.2m. • A down hole survey for each hole was completed using gyro equipment. • The lithium mineralisation is predominantly in the form of Spodumene-bearing pegmatites, the pegmatites are unzoned and vary in thickness from 5m-109m.
techniques	hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 sampling hammer. Core drilling was carried out using PQ/HQ single tube core barrels.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	ensure samples were maximised. Samples were carefully loaded into a splitter and split in the same manner ensuring that the sample split to be sent to the assay laboratories were in the range of 4-6kg. • Core recovery was measured and was found to
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC holes were logged in the field at the time of sampling. Core was logged in detail for a variety of physical characteristics in a logging yard away from the drilling Each 1m sample interval was carefully homogenised and assessed for lithology, colour, grainsize, structure and mineralisation. Core was sampled to geological boundaries and at 1m intervals therein. A representative chip sample produced from

Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques and sample preparation Quality of assay data and laboratory tests	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Percussion holes were logged for every metre drilled with the spoil collected for each metre by shovel and placed in a sample bag, a representative sub sample was taken and logged for lithology, colour, grainsize and mineralisation. Core was photographed. 1m RC samples were split by the riffle splitter at the drill rig and sampled dry. Core was cut in half using a diamond saw with 1m half core samples submitted for analysis or for metallurgical samples one of the halves was cut again for a quarter core and sent for analysis. The sampling was conducted using industry standard techniques and were considered appropriate. Field duplicates were used to test repeatability of the sub-sampling and were found to be satisfactory. Every effort was made to ensure that the samples were representative and not biased in any way. Samples were crushed to 70% less than 2mm, riffle split off 250g, pulverise split to better than 85% passing 75 microns and 5g was split of for assaying. The samples were analysed using ALS Laboratories ME-MS89L Super Trace method which combines a sodium peroxide fusion with ICP-MS instrumentation utilising collision/reaction cell technologies to provide the lowest detection limits available. A prepared sample (0.2g) is added to sodium peroxide flux, mixed well and then fused in at 670°C. The resulting melt is cooled and then dissolved in 30% hydrochloric acid. This solution is then analysed by ICP-MS and the results are corrected for spectral inter-element interferences. The final solution is then analysed by ICP-MS,
		dissolved in 30% hydrochloric acid. This solution is then analysed by ICP-MS and the results are corrected for spectral inter-element interferences.

Criteria	JORC Code Explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	parameters. Each 40-sample run is assayed with two blanks, two certified standards and one duplicate sample and results are evaluated accordingly. • A QA/QC review of all information indicated that all assays were satisfactory. • All information was internally audited by company personnel. • During this programme no holes were twinned. • Savannah's experienced project geologists supervised all processes. • All field data is entered into a custom log sheet and then into excel spreadsheets (supported by look-up tables) at site and subsequently validated as it is imported into the centralised Access database. • Hard copies of logs, survey and sampling data are stored in the local office and electronic data is stored on the company's cloud drive. • Results were reported as Li (ppm) and were converted to a percentage by dividing by 10,000 and then to Li ₂ O% by multiplying by 2.153.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	The coordinate of each drill hole was taken at the time of collecting using a handheld GPS with an accuracy of 5m. All collars were subsequently surveyed using DGPS with an accuracy of 0.2m. The grid system used is WSG84 Zone29N. An accurate, aerial topographic survey was obtained with accuracy of +/- 0.5m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling was carried out on an infill basis to attain on a nominal 40m by 40m and based on geological targets with selected infill to 40m by 20m. Drill data is considered of sufficient spacing to define Measured and Indicated Mineral Resource in accordance with requirements for a DFS Compositing to 1m will be applied prior to
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Prilling was generally carried out using angled holes, as close to perpendicular to strike as possible. All Geotech holes were drilled in various orientations to intersect planned pit walls. According to the expert (GGC - Consultants) requirements.
Sample security	The measures taken to ensure sample security.	Samples were delivered to a courier and chain of custody is managed by Savannah.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Internal company auditing based on previous programmes is carried out and an external review will be carried out by the resource consultant to assure that all data collection and QA/QC procedures were conducted to industry standards.

JORC Table 1 Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 All work was completed inside the Mina do Barroso project C-100. Savannah has received written confirmation from the DGEG that under article 24 of Decree-Law no. 88/90 of March 16 being relevant justification based on the resources allocated exploited and intended, Savannah has been approved an expansion up to 250m of C100 mining concession in specific areas where a resource has been defined and the requirement for the expansion can be justified. The entire Phase 2 includes a total of 117 drill holes. The surface access was granted by an administrative easement right defined in the C-100 mining contract, 95 of the drill holes were included in a first easement process, and the remaining 22 were subject to second easement that is still in progress.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Limited exploration work has been carried out by previous operators. No historic information has been included in the Mineral Resource estimates.
Geology	Deposit type, geological setting and style of mineralisation.	The lithium mineralisation is predominantly in the form of Spodumene-bearing pegmatites which are hosted in meta-pelitic and mica schists, and occasionally carbonate schists of upper Ordovician to lower Devonian age. The pegmatites vary in thickness from 5m-109m. The pegmatites occur within the license area as discrete bodies and currently four pegmatite bodies have a resource defined on them. The pegmatites vary in orientation from large shallow dipping bodies, such as the north – south striking Grandão and the east – west trending Reservatório to steeply dipping dyke like bodies seen at NOA and Pinheiro.
Drill hole information	 A summary of all information material to the under-standing of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A table containing all drill holes drilled and a list of significant assays from the results received is included with the release. No material data has been excluded from the release. .
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such 	 Length weighted average grades have been reported. No high-grade cuts have been applied to reported grades. Metal equivalent values are not being reported; however, Li is reported as ppm and converted to the oxide Li₂O for resource purposes. The conversion factor used is to divide the Li value by

Criteria	JORC Code explanation	Commentary
	 aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	10,000 and multiplying by 2.153 to represent the value as a percentage.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	The majority of holes have been drilled at angles to intersect the mineralisation in perpendicular relation to the pegmatite
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	A relevant plan showing the drilling is included within this release.
Balanced Reporting	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All relevant results available have been previously reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Geological mapping and rock chip sampling has been conducted over the project area.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The present drill programme has been designed to infill previous drilling to attain a measured or indicated class for an upcoming resource estimation. Further work is being planned as part of a second phase of resource infill drilling. Economic evaluation of the defined Mineral Resources, will be completed after the second phase of drilling.